
Understanding Uncertainty 

We sail within a vast sphere, ever drifting in uncertainty, driven from end to end --- B. Pascal 

(1623 - 1662) 

The most important reason for knowing about uncertainty is that it helps us weigh the 

evidence.  If you are called upon to make a judgment based on a collection of evidence, the task 

is straightforward if all of the evidence is equally reliable, but if some of the evidence is more 

uncertain than the rest, you really need to know how uncertain it is.  Here’s a non-numerical 

example:  Suppose you are on a jury, and there are ten witnesses who did not see what happened, 

one who did.  It makes sense that you would give less weight to the uncertain witnesses.    

In considering uncertainty, it is important to remember that uncertainty is not universal.  

Some things are, for all practical purposes, completely certain.  For example, if I buy a dozen 

eggs from the store, and I count how many eggs there are, the answer is 12, exactly, with no 

uncertainty.  However, there are a great number of processes in the world, that when measured, 

you can get a distribution of possible outcomes, and it is these processes that require us to deal 

with uncertainty. 

When confronted with a situation where the outcome is a distribution of possible values, 

our knowledge of the situation is best described by a range of numbers.  Our uncertainty is 

described by the range of numbers.  You can think of writing down the uncertainty as hedging a 

bet.  If you roll a pair of dice, the most likely outcome is 7, but that outcome occurs less than 

17% of the time.  If you want to be right more than half of the time, you can’t do it by betting on 

only 7, you have to bet on a range of number. 

 

Distribution Basics 
 

To get a better sense of what I mean by a range of numbers, let’s consider what happens 

when we roll a pair of dice many times.  Suppose the first time we roll two dice, the dots add up 

to 8, which we denote by x1 = 8. The second time, we observe a total of 11 spots, which we 

denote by x2 = 11.  It must be emphasized that each of these observations has no uncertainty.  

After rolling the pair of dice many times, ideally, we should get the probability distribution, X, 

shown in figure 1.  To describe the distribution, we say that the outline of the distribution is 

symmetrical and triangular, the distribution peaks at x = 7 spots, and the distribution has a half-

width at half-maximum (HWHM) of 3 spots. 
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Before I rolled the dice, I can’t tell you with exact certainty what particular outcome I 

will get.  Without knowing the distribution of outcome for the pair of dice (Figure 1), all I could 

have told you was that the total spot will be between 2 and 12 with 100% certainty.  However, 

with the knowledge of the distribution of outcome, I can say that the total number of spots will 

be between 4 and 10, for about 75% of the time, and a little less than 17% of the time the 

outcome will be 7 spots.  Now, just because I write the outcome as X = 7 ± 3 spots, it doesn’t 

mean that If I roll the dice, and I get 11 spots that I did something wrong.  All it means is that I 

rolled a combination that is outside of the 75% range of possible outcome.  However, if I 

consistently get 11 or 12 spots as my outcome, then it could be an indication that the dice I am 

using might not be fair.    

Now, let’s relate our dice example with a measurement you might do in the lab.  Suppose 

you are tasked with finding the period of a blinking light with a stopwatch.  If you do this 

measurement many times, you will find that your measurements fluctuate.  The main source of 

these fluctuations would probably arise from the difficulty in judging exactly when the light 

turns on or off, and in starting and stopping the stopwatch at the time that you judge.  Suppose in 

one measurement, you found the period to be 1.23 seconds.  We call this number the “indicated 

value”, which we distinguish from the “true value” of the period.  There is very little chance that 

the indicated value will be exactly equal to the true value.  However, if the processes that cause 

the indicated value to differ from the true value are equally likely to cause the differences 

between the two values to be positive or negative, then we could assume that the distribution of 

indicated value will be a symmetric distribution centered at the true value.  Such distribution 

would be similar to, but not exactly, like the double dice distribution shown in figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When someone writes that the period of a blinking light is 1.24± 0.02 seconds, what that 

often means is that the measured value of the period is assumed to be a Gaussian distribution, 

where the center of the distribution is 1.24 seconds, and the standard deviation (SD) of the 

 

Figure 2 



3 
 

distribution is 0.02 seconds.  Having a standard deviation of 0.02 seconds tells us that around 

68% of the time when the period is measured, the value should fall between 1.22 and 1.26 

seconds.  Figure 2 show what this distribution looks like.  The center of the Gaussian distribution 

is the average value of the distribution which often is called the mean and about 68% of the area 

under the distribution fells within one standard deviation on either side of the center of the 

distribution. 

 

Significant Figures 
 

The use of significant figures in reporting a result is a way to imply the uncertainty in the 

measurement.  For example, if you say that the length of an object is 0.428 m, by the rule of 

significant figures, this implies the uncertainty in the measurement is about 0.001 m.  To have 

reported this result as either 0.4 m or 0.428187 m would imply that you are certain of the result 

to 0.1 m in the first case or to 0.000001 m in the second.  The rule of significant figures is that 

you should only report as many significant figures as are consistent with the estimated 

uncertainty.  The quantity 0.428 m is said to have three significant figures.  The convention for 

reporting uncertainty is that only one digit is to be reported for the uncertainty, and the nominal 

value of your final result should not have more decimal places than the uncertainty.  For 

example, if the estimated uncertainty is 0.023 m for the length of the object, then the length 

would be reported as 0.43 ± 0.02 m. 

You should note that the rule for reporting the uncertainty to one digit is a convention, 

and if applied without thinking, it could sometimes lead to confusion.  For example, consider 

rolling an ordinary six-sided die.  If the die is fair, then the chance of getting any particular 

result, one to six, is the same, about 16.67%.  The distribution that describes the result of a die 

roll has a mean of 3.5 spots and a HWHM of 2.5 spots.  Following the rule of single digit 

uncertainty, we would describe the distribution as x = 4±3 spots.  Describing the distribution in 

this manner could lead to confusion because it implies that there is a possibility that you can roll 

a seven with a six-sided die.  It this case, it is preferable to report the distribution of the die roll 

as x = 3.5±2.5 spots. 

You should also remember that the rule of significant figures should be applied only 

when you are reporting your final result.  You should not use the rule of significant figures when 

you are recording data or doing calculation.  When writing down your measurement, keep as 

many digits as the instrument you are using allows.  For example, if you are using a meter stick 

that is divided into millimeter interval, then you should be able to report your length 

measurement out to the 0.1 mm place.  If you believe your data is only accurate to the nearest 0.3 

mm, then you should state that in your lab report, but do not try to account for that when you are 

recording your data.  You should maintain all the digits during any calculation with your raw 

data.  This is more practical if you are using a calculator or a computer to do the calculation.  If 
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you are doing a calculation by hand, and you choose to round-off your value during the course of 

the calculation make sure that you note what you did in your lab report. 

 

Uncertainty Propagation 
 

Consider the following scenario:  Suppose we know how to calculate some result X in 

terms of some input A and B.  The question is, given the uncertainty on A and B, how should we 

calculate the uncertainty on X?  To answer the question, we need to learn about propagation of 

uncertainty.  To really understand the propagation of uncertainty, we must learn how to do 

arithmetic on probability distributions.      

 

Monte Carlo Method of Uncertainty Propagation 
 

Let’s illustrate how to propagate uncertainty using the Monte Carlo Method with a simple 

example.  Suppose you wish to find the area of a large rectangular plate, and after measuring the 

length ten times, you found that it has a distribution of 156.2 ± 0.5 meters, and you also measure 

the width ten times, and found its distribution to be 367 ± 2 meters.  By reporting the measured 

length and width as distributions, you are telling me your assumption that if you were to measure 

the length and width both 1000 time, then my result would look like the distributions in Figure 3 

and 4, respectively.  Now, if I want to know the distribution of the area, I must multiply the 

distribution of the length by the distribution of the width, which would result in a distribution 

like that shown Figure 5.  The average of the area distribution is 57312 m2, and the standard 

deviation is 352 m2, so you can write the area as 57300 ± 400 m2.   This implies that for most of 

the time when we try to find the area of the plate, the result will be between 56900 m2 and 57700 

m2.  This method of propagating the uncertainty where you use a computer to generate sets of 

simulated data based on your measurements is called the Monte Carlo method.  In general, with a 

larger set of simulated data, the Monte Carlo method will yield a more accurate result.  However, 

the correlation between the sample size of the simulation and the accuracy of the result are not 

linear, and the best sample size to use will be depended on the situation.    
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Upper-Lower Bound Method (2N+1) of Uncertainty propagation 
 

Using a computer, it is fairly easy to carry out the distribution simulations; however, in 

the absence of a computer or the time to do the simulations, you can use a simplified method for 

propagating uncertainty we call the Upper-Lower Bound or 2N+1 method.  N here refers to the 

number of uncertain parameters, and the 2N+1 tells you the number of calculations you will have 

to do.  In the previous example where we want to find the area, N = 2 (length and width) and the 

number of calculations you must do is (2 x 2) + 1 = 5. 

Below is the procedure for the 2N+1 method: 

a. Do the calculation using the best-estimated values for all the input parameters, which usually 

are the average values. 

b. Re-do the calculation with one of the parameters set to its upper limit and leave the other N-1 

parameters at their best-estimated values. 

c. Re-do the calculation with the same parameter as in the previous step set to its lower limit, 

and again leave the other N-1 parameters at their best-estimated values. 

d. Repeat step b and c for all other parameters. 

e. The difference between the value calculated with the best-estimated values and the minimum 

calculated value would give you the lower end of the uncertainty. 

f. The difference between the maximum calculated value and the value calculated with the 

best-estimated values would give you the higher end of the uncertainty.         

The upper-lower bound method is by no means an exact method to propagate uncertainty.  It 

is basically a very simplified approximation of the Monte Carlo method.  The full Monte Carlo 

method is much better, but you can do the upper-lower bound method with just a calculator.  One 

property of the upper-lower bound method is that you can occasionally get asymmetrical 

uncertainty, meaning the lower and higher ends of the uncertainty does not have the same 

 
         Figure 5 
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magnitude.   This could occur whenever the value you are trying to calculate is not a linear 

function of your input parameters.  If you found that your calculated value has asymmetrical 

uncertainty using the upper-lower bound method, you should report your value with the 

asymmetrical uncertainty.

Below are the five calculations you will do, if you apply the 2N+1 method to the area example, 

where the length is (156.2 ± 0.5) m and the width is (367 ± 2) m:

a. 156.2m x 367m = 57325.4 m2 (nominal value of the result) 

b. (156.2m-0.5m) x 367m = 155.7m x 367m = 57141.9 m2

c. (156.2m+0.5m) x 367m = 156.7m x 367m = 57508.9 m2

d. 156.2m x (367+2m) = 156.2m x 369m = 57637.8 m2

e. 156.2m x (367-2m) = 156.2m x 365m = 57013.0 m2

The smallest result is 57013 m2 and the largest result is 57637.8 m2, and the nominal result is 

57325.4 m2.  The difference between the nominal result and the smallest result is 312.4 m2, and 

the difference between the largest result and the nominal result is also 312.4 m2.  So, we report 

the value of the area as 57300 ± 300 m2.  This implies that most of the time when we try to find 

the area of the plate, the result will be between 57000 m2 and 57600 m2.

 

Types of Uncertainties 
   

Roughly speaking, uncertainties can be classified as non-systematic and systematic.  Non-

systematic random uncertainties are the type of uncertainties that you can quantify with the 

standard deviation of a distribution which quantifies the non-reproducibility in your results.  

When non-systematic uncertainties are random, with a well-behaved distribution, the 

uncertainties will usually average out if you take enough data.  By the uncertainties averaging 

out, I mean that we can assume that the distribution of indicated value we measured will be a 

symmetric distribution centered at the true value.  In other words, the average of your data will 

converge to the true value if you take enough data point. Systematic uncertainties are biased and 

cannot be average out.  Systematic uncertainties are usually harder to quantify.  For example, 

suppose you measure something using an instrument that is mis-calibrated, and the mis-

calibration is large compared to the empirical scattering that you see in your readings.  As far as 

you can tell, your results are reproducible, and you cannot tell your instrument is mis-calibrated 

unless you compare your results with measurements taken by a different instrument.   

Given any set of data, we can calculate the standard deviation of that data, and it gives us a 

measure of the uncertainty in the data.  It would be nice if we could use this information to 

predict how well our data will agree with future measurements of the same quantity, but this is 

not always possible because there may be sources of uncertainty that is not quantified by the 

standard deviation.  To clarify my point, suppose we have a set of voltmeters with some 

uncertainty due to calibration errors.  If one group performs a set of measurement using an 
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ensemble of voltmeters, while a second group uses only a single voltmeter, then the calibration 

errors will show up as readily observable scatter in the first group’s results, but it will show up as 

a hard to detect systematic error in the second group’s results.    

Sometime people imagine there is a clean dichotomy between non-systematic and systematic 

uncertainties, but there can be situation where you have systematic uncertainty embedded within 

non-systematic uncertainties.  For example, suppose you want to measure the position of a 

slowly moving particle under a microscope.  If you accidently use a 10x microscope when you 

think you are using a 30x microscope, then the non-systematic uncertainty in your data would 

decrease systematically by a factor of 3.     

You should always remember that the standard deviation only quantifies one contribution to 

the overall uncertainty of your result.  It only provides a lower bound on the uncertainty of the 

average.  It tells you nothing about possible systematic offsets of the average value and tells you 

nothing about possible systematic uncertainty in the non-systematic uncertainty you measured.   

 

Identifying Errors in Measurements 

 
There is no general rule for determining the uncertainty in all measurements. The experimenter 

must evaluate and quantify the uncertainty of a measurement based on what she knows of the 

factors that affect the result. Therefore, the person making the measurement must make the best 

judgment possible and report the uncertainty in a way that clearly explains what the uncertainty 

represents. The following are some examples of possible sources of errors and uncertainty in an 

experiment. 

 
Instrument resolution (random) — All instruments have finite precision that limits the ability 

to resolve small measurement differences. For instance, a meter stick cannot be used to 

distinguish distances to a precision much better than about half of its smallest scale division.  For 

example, if the distance in an experiment is measured with a ruler with marking at every 1 cm, 

then the uncertainty for the distance is estimated to be 0.5 cm. 

 

Environmental factors (systematic and/or random) —Vibrations, drafts, changes in 

temperature, and electronic noise or other effects from nearby apparatus are examples of 

environmental factors that should accounted for if elimination is not possible. 

 

Uncertainties on the curve fit parameters (may be systematic and/or random) — This is 

probably one of the most common uncertainty you will encounter in the introductory labs. 

Whenever you fit a mathematical model to your data, there will be an uncertainty associated with 

each fitted parameter in your mathematical model. The uncertainties on the parameters are the 

standard deviations of the parameters from the fitting process. To see what that means, consider 

the y-intercept in a linear fit. If the value of the fitted y-intercept is changed a lot by a little 
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change in the data, then the fitted y-intercept will have a bigger uncertainty. The uncertainties on 

the curve fit parameters are a measured of how well your data match with the mathematical 

model.  

 

Uncontrolled Variation (may be systematic and/or random) — Different experimenters might 

unconsciously perform the same experiment differently if the procedure is not described exactly.  

For example, when two different people measure the length of the same string, they might stretch 

the string with a different tension, thus resulting in slightly different length measurement.  

 

Calibration (systematic) — Whenever possible, the calibration of an instrument should be 

checked against a calibration standard. If a calibration standard is not available, the accuracy of 

the instrument should be checked by comparing with other similar instruments.  

 

Instrument drift (systematic) — Most electronic instruments have readings that drift over time. 

The amount of drift is generally not a concern, but occasionally this source of error can be 

significant. 

 

Lag time and hysteresis (systematic) — Some measuring devices require time to reach 

equilibrium. A common example is taking temperature readings with a thermometer that has not 

reached thermal equilibrium with its environment. A similar effect is hysteresis where the 

instrument readings lag and appear to have a "memory" effect, as data are taken sequentially 

moving up or down through a range of values. Hysteresis is most associated with materials that 

become magnetized when a changing magnetic field is applied. 

 

Purposes of Uncertainty 
 

In a classroom setting, students often get the idea that the goal of reporting the uncertainty is 

to reflect the difference between the measured value and the “correct” value.  But the real goal in 

reporting an uncertainty is to determine the uncertainty of the measurement based on the 

procedures and analysis used.  If two groups measure the same quantities in two different ways, 

then the only way that we can determine whether their results agree is for us to compare their 

nominal results along with their reported uncertainties.  For example, we say the quantities 10±2 

and 11±2 agree because there is considerable overlap between their probability distributions.  

When we say the two quantities agree, what we mean is that they are reasonably consistent.  If 

your results disagree with well-established results, that should act as a motivation for you to go 

back and scrutinize your procedure and analysis.   

You should not assume that all your uncertainties are due to imperfect measurements.  

Consider the case where you are measuring the properties of a real spring.  It will exhibit some 

nonlinear force-verse-extension relationship.  If you model your data with a straight line, there 
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will be some “error.”  However, this would be primarily an error in the model, not in the 

observed data.  In general, you will have this type of error whenever you use a model.  When you 

perform a fit to your data using the model of your choice, the fit will output an error, and what 

that reported error provide is the bounds on the error of the model.  It is important to realize that 

uncertainty analysis is not limited to hunting for errors and uncertainties in the data.  In the case 

of a real spring, the real spring is not “at fault” for not adhering to a linear force-verse-extension 

model.  


